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A new, high-order, conservative, and efficient method for conservation laws on unstructured grids has been 
developed. It combines the best features of structured and unstructured grid methods to attain computational 
efficiency and geometric flexibility; it utilizes the concept of discontinuous and high-order local 
representations to achieve conservation and high accuracy; and it is based on the finite-difference 
formulation for simplicity. Universal reconstructions are obtained by distributing unknown and flux points in 
a geometrically similar manner for all unstructured cells. Placement of these points with various orders of 
accuracy are given for triangular and tetrahedral elements. Accuracy studies of the method are carried out 
with the two-dimensional linear wave equation and Burgers’ equation, and each order of accuracy is 
numerically verified. Numerical solutions of plane electromagnetic waves incident on perfectly conducting 
circular cylinders and spheres are presented and compared with the exact solutions to demonstrate the 
capability of the method. Excellent agreements have been found.  The method is simpler and more efficient 
than previous discontinuous Galerkin and spectral volume methods for unstructured grids. 

Nomenclature 
 

! 

d   = dimension of the domain 

! 

F   = generalized flux 

! 

i   = index for cell 

! 

j   = index for unknown 

! 

u  

! 

k   = index for flux 

! 

F  

! 

l   = index for face 

! 

L
j
  = cardinal basis or shape function for unknown 

! 

u  

! 

M
k
  = cardinal basis or shape function for flux 

! 

F  

! 

r
j
   = unknown location 

! 

r
k
   = flux location 

! 

S   = face area 

! 

V    = cell volume 

! 

u    = conservative variable 
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I. Introduction 
 

current problem of great interest is to obtain very high-order accurate and efficient numerical solutions of 
systems of conservation laws for complex shapes. There are two types of computational grids, namely 

structured and unstructured grids. For most problems with complex shapes, unstructured grids consisting of triangles 
in two dimensions (2D) and tetrahedra in three dimensions (3D) are preferred because of the relatively short grid 
generation time. The most commonly used unstructured method is the finite-volume (FV) method, applied to the 
integral form of the conservation law with cell averages of the conservative variables as the unknowns [1,6,10]. A 
reconstruction of any desired order of accuracy for each cell is obtained in terms of unknowns at neighboring cells. 
The flux integral for each face is evaluated using the reconstructed solution for the two cells and an approximate 
Riemann solver. For non-linear flux functions, a quadrature approximation is employed. Thus, conservation is 
satisfied locally for each cell. However, due to the unstructured nature of the grid, it is difficult to obtain a non-
singular stencil. This necessitates a least-squares inversion in general. For a very high order of accuracy, the number 
of cells in the stencil, and thus the number of operations to carry out the numerical procedure, can become very large 
in 3D. This would hamper the efficiency of the method. Furthermore, since each unknown employs a different 
stencil, one must repeat the least-squares inversion for every cell at each time step, or store the inversion 
coefficients. In a high-order, 3D computation, the former would involve impractically large computer times, while 
for the latter, the memory requirement becomes prohibitive. In addition, the data from neighboring cells required for 
the computation can be far apart in memory. This further hampers the efficiency of the method due to data gathering 
and scattering. As a result of these deficiencies, the FV method is limited to second order accuracy in most 
applications.  
 
 

Finite element (FE) methods [7] have long been used for unstructured grids because of their geometric 
flexibility. A major difference between the FE and the FV methods is that the former seeks reconstruction data from 
within the cell (or element), while the latter employs the data from outside the cell. In the FE formulation, unknowns 
are nodal values, which are placed at geometrically similar points in each element. Due to this geometric similarity, 
the local reconstruction becomes universal for all cells in terms of the same set of cardinal basis or shape functions. 
By assigning a single value to the nodes on cell boundaries, a global piecewise continuous reconstruction can be 
obtained. The conservative equations are then satisfied in a weak form by multiplying them with the requisite 
number of test functions, integrating over the global domain, and using integration by parts. This results in a set of 
coupled equations for all unknowns. Their solution involves a very large, sparse matrix, whose elements depend on 
the cell geometries. For nonlinear equations, quadrature approximations are necessary to evaluate the matrix 
elements. While the integral conservation law is satisfied for the global domain, it is not satisfied locally for each 
cell. 
 
To overcome the deficiencies of the FE method for conservation laws, the discontinuous Galerkin (DG) method was 
developed [2-5]. Nodes on cell boundaries are allowed to have multiple values, so that the local reconstruction in 
each cell is, in general, discontinuous with that of its neighbors. The integration is carried out over each element, 
using the local shape functions as the test functions. As in the FV method, a Riemann solver is employed at cell 
boundaries. The integral conservation law is now satisfied for each cell. While we must still solve sets of coupled 
equations, each set now only involves the unknowns in one element. In addition, since the integrals involve 
quadratic terms, the quadrature formulas must have twice the degree of precision as the precision of the 
reconstruction. 
 
The spectral volume (SV) method [12,18-21] overcomes the computational inefficiencies of the FV method by 
adopting the FE concept of using only data within the cell for reconstruction. Each triangular or tetrahedral cell, here 
called a spectral volume (SV), is partitioned into structured subcells called control volumes (CV). These are 
polygons in 2D, and polyhedra in 3D. The latter can have non-planar faces, which must be subdivided into planar 
facets in order to perform flux integrations. The unknowns are now cell averages over the CVs. If the SVs are 
partitioned in a geometrically similar manner, a single, universal reconstruction results. Thus, only a few coefficients 
need to be stored in advance to evaluate all flux integrals. For high orders of accuracy in 3D, the partitioning 
requires the introduction of a large number of parameters, whose optimization to achieve convergence becomes 
increasingly more difficult. The growth in the number of interior facets and the increase in the number of quadrature 
points for each facet raise the computational cost greatly. 

A 
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An alternate method for unstructured grids is the finite-difference (FD) method [17], applied to the differential 

form of the conservation law with values of the conservative variables at grid nodes as the unknowns. Actually, one 
only needs an arbitrary set of nodal points, without the connections that define a grid. One again employs a local 
reconstruction in terms of neighboring unknowns, but the method is simpler than the FV method, since one only 
needs to differentiate the reconstructed solution. In addition to all the disadvantages of the latter, the method is not 
locally conservative. 

 
In this paper, we introduce a new, high-order, conservative, and efficient method, named the spectral difference 
(SD) method, for conservation laws on unstructured grids. The method combines the best features of structured and 
unstructured grid methods to attain computational efficiency and geometric flexibility. It utilizes the concept of 
discontinuous and high-order local representations to achieve conservation and high accuracy in a manner similar to 
the DG and SV methods, but the new method is based on the FD formulation to attain a simpler form and higher 
efficiency. In the next section, we first describe the basic formulation of the method. Some representative 
placements of the unknown and flux points with various orders of accuracy for triangular and tetrahedral elements 
are then presented in Section III. Accuracy studies of the method are carried out with the two-dimensional linear 
wave equation and Burgers’ equation in Section IV. Each order of accuracy is numerically verified with five 
unstructured grids of consecutive refinement. Numerical solutions of plane electromagnetic waves incident on 
perfectly conducting circular cylinders and spheres are also presented and compared with the exact solutions in 
Section IV. Finally, some concluding remarks and suggestions for future study are given in Section V. 
 
 

II. � � The Spectral Difference Method 

A. General description 
 
The partitioning of grid cells into subcells in the SV method is dictated by the need to satisfy the integral 
conservation law for each cell in order to capture discontinuities. It is then natural to define cell averages of 
conservative variables as discrete unknowns. But the flux integral for each grid cell can only be evaluated 
approximately. The accuracy of the flux at any point depends on the accuracy of the conservative variables, which is 
limited by the degree of precision of its reconstruction from the discrete unknowns. If the flux is non-linear, the 
surface integral is evaluated as a weighted sum of values at quadrature points, which is also accurate up to a certain 
degree of precision. Thus the unknowns can only be updated with a certain order of accuracy. It is therefore 
sufficient to define the conservative unknowns at quadrature points that will approximate the volume integral over 
the cell to the desired order of accuracy, and that support a polynomial reconstruction of the desired degree of 
precision. Similarly, the flux will be defined at a different set of points, some or all of which lie on the cell 
boundary. They are located so that quadrature approximations for surface integrals over the cell boundaries exist to a 
required order of accuracy. The unknowns are updated using the differential form of the conservation law. 
Therefore, the flux points must support a polynomial reconstruction of one higher degree of precision than the one 
for the conservative unknowns. Their location must also be chosen such that the integral conservation law for each 
grid cell is satisfied to the desired order of accuracy. If the nodes are distributed in a geometrically similar manner 
for all cells, the discretizations become universal, and can be expressed as the same weighted sums of the products 
of the local metrics and fluxes. These metrics are constants for the line, triangle, and tetrahedron elements, and can 
be computed analytically for curved elements. In this paper we only consider simplex cells with straight edges and 
planar faces. Further details are given in [13].  
 

B. Details of the spectral difference method 
 

The most general form of a conservation law can be written as 

! 

"u

" t
+#* F = 0 ,                                                                                                           (1) 
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where the conservative variable 

! 

u  can be a scalar or a vector, and the generalized flux 

! 

F  can be a vector or tensor. 
The term 

! 

"# F represents the divergence or curl of 

! 

F , depending on the physical definition of 

! 

u . Integrating (1) 
over cell 

! 

i , we obtain 

! 

d

d t
udV

Vi

" + d
Si
l"

l=1

d+1

# S$ F = 0 ,                                                                                 (2) 

where 

! 

V
i
 is the volume of the cell 

! 

i , and 

! 

S
i

l  is the area vector of face 

! 

l  for cell 

! 

i . (In 2D, each face is actually a 
line.) Here 

! 

d  is the dimension of the domain, and the number of faces for each cell is 

! 

d +1. 
 
 In each cell, the discrete unknowns are the values of 

! 

u  at quadrature points for the volume integral over the cell. 
We denote these points, some of which may lie on the cell faces, as 

! 

r
j,i

, and define 

! 

u
j,i

 as 

! 

u(r
j,i
) . The expansion of 

! 

u  in the cell can be written in the cardinal form  

! 

u
i
(r) = L

j,i
(r) u

j,i

j=1

Np
d

" ,                                                                                                 (3)      

where 

! 

L
j,i
(r)  are the cardinal basis functions and 

! 

N
p

d  is the number of basis functions required to support a desired 
degree of precision 

! 

p  of the reconstruction, and is given by 

! 

N
p

d
=
(p+ d)!

p!d!
.                                                                                                             (4) 

 We will use polynomials as an independent basis. The locations of 

! 

r
j,i

 then uniquely define the 

! 

L
j,i
(r) .  

    
To evaluate the surface integrals in (2) efficiently, we discretize 

! 

F  at points 

! 

r
k,i

, most or all of which are located at 
quadrature points for those integrals. If we define 

! 

F
k,i

 as 

! 

F (u(r
k,i
)) , the expansion of 

! 

F  in the cell can also be 
written in the cardinal form  

! 

F
i
(r) = M

k,i
(r)F

k,i

k=1

Np+1
d

" ,                                                                                                (5) 

where 

! 

M
k,i
(r)  are now the set of cardinal basis functions defined by 

! 

r
k,i

. We can satisfy (1) at points 

! 

r
j,i

 by 
evaluating 

! 

"* F (r
j,i
) = "M

k,i
(r

j ,i
)* F

k,i

k=1

Np+1
d

# .                                                                                (6) 

To evaluate 

! 

F
k,i

, 

! 

u
k,i

 is required, which can be obtained directly from (3) as 

! 

u
k,i

= L
j,i
(r

k,i
) u

j,i

j=1

Np
d

" .                                                                                                  (7) 

To reduce the cost of this interpolation, some of points 

! 

r
k,i

 may be chosen to coincide with 

! 

r
j,i

. If the points 

! 

r
j,i

 and 

! 

r
k,i

 are distributed in a geometrically similar manner for all cells, and within each cell 

! 

i  the gradient of a function is 
expressed in terms of its area vectors 

! 

S
i

l , the coefficients in (6) and (7) become universal, independent of cell 

! 

i . 
Therefore, one can express these coefficients as  

! 

L
j,i
(r

k,i
) = l

kj
,                                                                                                               (8) 

and  

! 

"M
k,i
(r

j ,i
) =

#1

dV
i

m
jk,l
S
i

l

l=1

d

$ ,                                                                                       (9) 

where we have chosen 

! 

d  of the area vectors 

! 

S
i

l  as basis vectors. There are only a few of these coefficients, which 
can be calculated exactly and stored in advance. Equations (7) and (6) can thus be rewritten as 

! 

u
k,i

= l
kj
u

j,i

j=1

Np
d

" ,                                                                                                          (10) 

and 

! 

"* F (r
j,i
) =

#1

dV
i

S
i

l
* m

jk,l
F
k,i

k=1

Np+1
d

$
l=1

d

$ .                                                                         (11) 
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For those points 

! 

r
k,i

 located on the cell faces, since 

! 

u  may be discontinuous, we must replace the flux components 

! 

n" F  by a Riemann flux [10,12,14-15]. Here 

! 

n is defined as the unit vector outward normal to the face. The other 
flux components either remain unchanged in each cell or are simply set to the arithmetic averages of the values on 
the two sides of the face. 
 

There are possible circumstances in which the reconstruction matrix for 

! 

u  or 

! 

F  is singular. In such a case, we 
can choose a different set of points. Alternatively, we can add additional points, generally one point at the centroid 
of the cell, to remove the singularity. We then use a least-squares method, the same one used in the FV method 
[1,6,10], for the reconstruction. All equations above are still valid, with the exception of the upper limits which must 
be suitably altered.   
 

To check the integral conservation law for the cell, we evaluate the volume integral 

! 

"* F dV = V
i

Vi
# w

j
"* F (r

j,i

j=1

Np
d

$ ) = %
1

d
w

j

k=1

N
p+1

d

$
j=1

N
p

d

$
l=1

d

$ m
jk,l
S
i

l & F
k,i

.                             (12) 

Here, 

! 

w
j
 are the volume quadrature weights at the points 

! 

r
j,i

. We can also evaluate the surface integral of 

! 

F  as 

! 

d
Si
l"

l=1

d+1

# S$ F = S
i

l

l=1

d+1

# * w
k
F
k,i

k

# .                                                                              (13) 

Here, 

! 

w
k
 are surface quadrature weights for face 

! 

l , and for each face, the summation is over those points 

! 

r
k,i

 
located on that face. For the local integral conservation (2) to be exactly satisfied numerically, Eq. (12) and the 

resulting equation of (13) using the relation 

! 

S
i

l

l=1

d+1

" = 0 must have the same coefficient for each 

! 

F
k,i

. In particular, the 

total contribution from any interior point 

! 

F
k,i

 to the volume integral in (12) must vanish.  
 
The SD formulation for the line element is a generalization of the multi-domain spectral method [8,9]. In [8,9], the 

! 

u  points were chosen at Gauss quadrature points and the 

! 

F  points at Gauss-Lobatto points. Here, the distributions 
of 

! 

u  and 

! 

F  points are based on those quadrature points that lead to the satisfaction of the integral form of the 
conservation law. Since this does not define a unique set of locations, they can be optimized by minimizing some 
object functions. The tensor products of the line formulation can be used for quadrilateral and hexahedral cells or 
elements. 
 

From Eqs. (10) and (11), we also see that the SD formulation is very similar to that of the FD method for 
structured grids. The SD method thus retains the simplicity and computational efficiency of the structured FD 
method. However, the metric terms in the latter are evaluated by numerically differencing the grid point coordinates. 
Since the methods used in numerical grid generations are mostly only second-order accurate, the overall accuracy of 
the solution can be severely degraded if the grid is not sufficiently smooth. In contrast, the metric terms in the SD 
method are computed exactly from the geometry of the grid, no matter how it was generated.  It thus retains its 
formal accuracy, even for very unsmooth unstructured grids. Furthermore, in contrast to the FD method, the integral 
conservation law is satisfied to the desired accuracy. 
 
 

III. Locations of the Unknown and Flux Points 
 

The critical part of the SD method is the location of the 

! 

u  points 

! 

r
j,i

 and 

! 

F  points 

! 

r
k,i

. If those points are 
distributed in a geometrically similar manner for all cells, the formulas for the flux derivatives become universal, 
and can be expressed as the same weighted sums of the products of the local metrics and fluxes. The locations of the 

! 

u  and 

! 

F  points are determined by symmetry groups associated with the cell centroids, vertices, edges, and faces 
[11]. All but the first contain arbitrary parameters that can be varied to obtain optimum solutions. The number of 
points required for a reconstruction with a specified degree of precision is greater than the minimum number of 
Gaussian quadrature points for that precision. One can obtain greater efficiency by locating some 

! 

u  points to 
coincide with 

! 

F  points. For 

! 

F  points on the vertices in 2D and edges and vertices in 3D, more than one Riemann 
solver is necessary. For those formulations with expensive Riemann solvers, these points should be minimized. 



 
 
6 

Another criterion for the placement of 

! 

u  and 

! 

F  points is that the reconstruction matrix is nonsingular, if possible. If 
additional points are needed, the rank of the reconstruction matrix must be the same as the number of basis functions 
used. Even in this case, we can show that the number of 

! 

F  points is far less than the number of flux quadrature 
points in the SV method with the same accuracy. The final criterion is that integral conservation is satisfied within 
the desired degree of precision.  

 
 Equation (4) gives the minimum number of points required in a reconstruction that support a polynomial of degree 

! 

p . If the 

! 

u  points support 
a polynomial of degree 

! 

p , 
the 

! 

F  points must support 
a polynomial of degree 

! 

p+1 , and the order of 
accuracy of the method is 

! 

p+1. While the accuracy 
of the SD method depends 
on the locations of 

! 

u  and 

! 

F  points, here we present 
only some representative 
placements of 

! 

u  and 

! 

F  
points that satisfy the 
integral conservation law, 
for various orders of 
accuracy. These placements 
do not necessarily represent 
the best choices, but they 
do show the orders of 
accuracy as claimed in our 
numerical tests. The exact 
locations of these points as 
well as the corresponding 
coefficients 

! 

lkj  and 

! 

m jk,l  
can be obtained by 
contacting the first author. 
Some data are also 
presented in [13]. 
 

In Fig. 1 we show the 
placements of 

! 

u  points 
(circles) and 

! 

F  points 
(squares) for the triangle. 
Figures 1a and 1b show 
two different placements of 
the 

! 

F  points for first order 
accuracy. Three different 
second-order accurate 
placements are shown. In 
Fig. 1c, the 

! 

u  points are at 
the Gaussian quadrature 
points, while the 

! 

F  points 
are at the Gauss-Lobatto 
points on the edges. In Fig. 
1d the 

! 

u  points are moved 
to the other Gauss points on 
the midedges, where they coincide with 

! 

F  points. Moving the 

! 

F  points to the Gaussian points on the edges in order 
to minimize Riemann solver calls results in a singular matrix. The singularity is removed by adding an additional 

! 

F  

 
                                         (a)                                           (b) 

      
 

                    (c)                                        (d)                                        (e) 

     
 

                                         (f)                                            (g) 

      
 

Figure 1. Placement of unknown and flux points for a triangular element. 
 
                          (a)                                       (b)                                        (c) 

    
 

Figure 2.Placement of unknown and flux points for a tetrahedral element. 
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point at the centroid as shown in Fig. 1e. Figures 1f and 1g show a third- and a fourth-order accurate placement, 
respectively. While the former has one interior 

! 

F  point and the latter has three, the boundary 

! 

F  points are at their 
Gauss-Lobatto points on the edges and the 

! 

u  points are at a fifth-order accurate volume quadrature points for both 
cases. In Fig. 2 we show several placements of the points for the tetrahedral element. Figures. 2a and 2b show two 
different placements of the 

! 

F  points for first order accuracy, while the 

! 

u  point is at the centroid. A second-order 
accurate placement of points is shown in Fig. 2c. The 

! 

u  points are located at the Gaussian quadrature points. Six of 
the 

! 

F  points are on the edge midpoints, while the remaining four vertex-based points are at some arbitrary interior 
points. In all placements presented here, the local integral conservation is exactly satisfied numerically. In addition, 
the geometrical conservation is also satisfied. 
 
 

IV. Numerical Results 

A.  Accuracy study with 2D linear wave equation 
 
We first test the accuracy of the SD method on the 2D linear wave equation 

! 

"u

"t
+
"u

"x
+
"u

"y
= 0, #1$ x $ 1, #1$ y $ 1,

u(x, y,0) = sin% (x + y), periodic boundary condition.

                                      (14) 

A 10x10x2 unstructured grid over the square domain (

! 

"1# x # 1,"1# y # 1) is shown in Fig. 3. Note that the cells 
in the irregular grid have varying sizes. Five grids 
of consecutive refinement were used in the study. 
The finer grids were generated recursively by 
cutting each coarser grid cell into four finer grid 
cells. The boundary fluxes on each triangular 
element’s face were computed fully upwinded. 
The initial condition is 

! 

u
0
(x, y) = sin" (x + y) . 

This solution is then updated at each time step 
using the third-order Runge-Kutta scheme in [16]. 
The numerical simulation was carried until t = 1. 
In Fig. 4a, we plot the 

! 

L
1
 and 

! 

L
"

 error norms 
using the first to fourth order SD schemes with 
the 

! 

u  and 

! 

F  placements given in Figs. 1a, 1c, 1f, 
and 1g, respectively. The errors presented in the 
figure are time 
independent because 
the time step 

! 

"t  was 
made small enough 
so that the errors are 
dominated by the 
spatial discretization. 
It is easily verified 
from the figure that 
all schemes are 
convergent with grid 
refinement and the 
expected orders of 
accuracy have been 
achieved. In Fig. 4b, 
we show the same 
error norms using 
the second to fourth 
order SV schemes [19]. It is shown that the SD method has similar errors as the SV method in this test.  

 
 

Figure 3. An unstructured grid over a square domain. 
                                  (a) SD                                                         (b) SV 

    
 

Figure 4. Error Norms of various order of accuracy  
for the 2D linear wave equation at t=1.0. 
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B.  Burgers’ equation and shock capturing 
 

In this case, we test the accuracy of the SD method on the 2D Burgers equation: 

! 

"u

"t
+
"u

2
/ 2

"x
+
"u

2
/ 2

"y
= 0, #1$ x $ 1, #1$ y $ 1,

u(x, y,0) =
1

4
+
1

2
sin% (x + y), periodic boundary condition.

                            (15) 

The test was carried out 
using the same first to 
fourth order SD schemes 
and the same time 
integration scheme on the 
same grids as used in the 
previous test. The boundary 
fluxes on each element’s 
face were first computed 
fully upwinded. We started 
with a smooth initial 
solution. Due to the non-
linearity of the Burgers 
equation, discontinuities 
will develop in the solution. 
At t = 0.1, the exact 
solution is still smooth. The 
numerical simulation was 
therefore carried out until t 
= 0.1 without the use of 
limiters. In Fig. 5a, we 
present the 

! 

L
1

 and 

! 

L
"
 

errors of the four SD 
schemes. The performance 
of the SD method on the 
non-linear Burgers 
equation is very good. All 
schemes are convergent 
with grid refinement and 
the expected orders of 
accuracy have been 
achieved, although there is 
a slight loss of accuracy in 
the 

! 

L
"
 norm, probably due 

to the non-linear nature of 
the Burgers equation. In 
Fig. 5b, we also show the 
same error norms using the 
second to fourth order SV 
schemes [19]. Again, the 
SD method has similar 
errors as the SV method in 
this test. We then carried 
out the test with a different 
way to compute the 
boundary fluxes. On each 

                             (a) SD                                                         (b) SV 

    
 

Figure 5. Error Norms of various order of accuracy  
for the 2D Burgers equation at t=0.1. 

                              (a) exact                                    (b) second-order SD 

  
                  (c) third-order SD                            (d) fourth-order SD 

      
 

Figure 6. Solutions of the 2D Burgers equation at t = 0.45 
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face, the normal component of the flux at every flux point was first computed with the Rusanov Riemann flux [15]. 
The full flux was then determined with the two Riemann fluxes at each vertex of every element, while it was 
determined with the Riemann flux and the original tangential flux at other flux points on the face. The errors are 
similar to the previous test with fully upwind fluxes. At t = 0.45, the exact solution has developed two shock waves, 
and limiters were then used to handle the discontinuities. A TVD limiter implemented here is very similar to that for 
the SV method [19]. Shown in Figure 6 are the exact solution and the numerical solutions with the second, third, and 
fourth order SD schemes using fully upwind boundary fluxes on the 40x40x2 irregular grid. The shock waves are 
well captured in all cases. 
 
 
C.  Scattering of an electromagnetic plane wave incident on a perfectly conducting cylinder and sphere 
 

To demonstrate the high accuracy of the method, it was decided in this initial phase to choose problems for 
which there exist exact solutions. To this end, we solve the Maxwell equations 

! 

"D

"t
# $%H = 0                                                                                                        (16a) 

! 

"B

"t
+#$ E = 0.                                                                                                       (16b) 

The electric and magnetic flux density vectors 

! 

(D,B)  and the intensity vectors 

! 

(E,H)  are related through the 
constitutive relations 

! 

D = " E                                                                                                                    (17a) 

! 

B = µH ,                                                                                                                (17b) 
where 

! 

"  is the permittivity and 

! 

µ  is the permeability of the material. Exact solutions exist for plane waves incident 
on simple bodies in two and three dimensions. The time integration scheme and the Riemann solver used here are 
the same ones previously used in the SV paper [12].  
 

For the first test case, we considered a plane wave incident on a perfectly conducting circular cylinder. 
Calculations were carried out over an unstructured grid consisting of 2024 cells, shown in Fig. 7a. The cylinder is 
approximated with a 32-sided polygon. The outer boundary is two radii away from the body surface, with no 
perfectly matched layer (PML). This gives approximately 

! 

30 /ka  cells per wavelength, or approximately 

! 

30 n(n +1) /ka  unknowns per wavelength. Here 

! 

k  is the wave number, 

! 

a  is the radius of the cylinder, and 

! 

n = p+1 is the order of the accuracy of the method. The incident wave with 

! 

ka = 5 is propagating from left to right. 
Figures 7b to 7f show contour plots of 

! 

E
z
 for a transverse magnetic (TM) wave as calculated using the first to fourth 

order SD schemes with the 

! 

u  and 

! 

F  placements given in Figs. 1a, 1c, 1e, 1f, and 1g. We have also plotted the exact 
solution (solid lines) on Figs. 7b to 7f for easy comparisons. It is seen that the first order solution is very dissipative 
with this resolution. While both second-order solutions captured all the main features of the wave, the scheme using 
the least-squares formulation is more accurate.  The third and fourth order solutions show excellent agreement with 
the exact solution. Similar results were also obtained for a transverse electric (TE) wave. Figures 8a to 8c show the 
contour plots for a wave with 

! 

ka = 10  using the second to fourth order SD schemes. With the grid resolution 
reduced by a factor of two, the second-order scheme now is unable to produce an accurate solution. The third-order 
scheme can still capture the main features of the wave, but is slightly dissipative. Nevertheless, the fourth-order 
scheme agrees very well with the exact solution. We next tested the SD schemes on a grid with the outer boundary 
much closer to the body. Figure 9a shows a grid consisting of 226 cells with the same resolution, but the outer 
boundary is only a half radius away from the body. Numerical solutions of the third and fourth order SD schemes 
are plotted in Fig. 9b and 9c, respectively. They agree well with the exact solution, attesting to the accuracy of the 
numerical non-reflecting boundary procedure. 
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For three-dimensional cases, the Maxwell equations pose a challenge for the SD method. This is because each 

Riemann solver gives two tangential components of each 

! 

E and 

! 

H  field, and therefore fluxes at any point on the 
vertices or edges of the tetrahedral cell are over-determined. Further research is required to solve this problem. Here, 
we only considered a plane wave incident on a perfectly conducting sphere using the first-order SD scheme with the 

! 

u  and 

! 

F  placements given in Fig. 2a. Figure 10a shows the unstructured grid, consisting of 113,352 tetrahedral 

      
 

                    (a) grid                                              (b) first order                                      (c) second order 

     
  (d) second order, least-squares formulation       (e) third order                                     (f) fourth order 

     
 

Figure 7.  Contour plot of 

! 

E
z
for a plane wave (

! 

ka = 5 ) incident on a perfectly conducting cylinder. 
 
 

                   (a) second order                               (b) third order                                     (c) fourth order 

            
 

Figure 8.Contour plot of 

! 

E
z
for a plane wave (

! 

ka = 10 ) incident on a perfectly conducting cylinder. 
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cells. The outer boundary is two radii away from the body surface, also with no PML. This gives approximately 

! 

30 /ka  cells or 

! 

30 n(n +1)(n + 2)3 /ka  unknowns per wavelength for the first-order scheme. The incident wave, 
propagating in the positive 

! 

z  direction, has an 

! 

x  component for the 

! 

E field and a 

! 

y  component for the 

! 

H  field, 
with 

! 

ka = 1. Figure 10b shows the color contours of 

! 

E
x
 plotted on the sphere, plane of symmetry, and the outer 

boundaries. The exact solution is also plotted in the same figure with solid contour lines for easy comparisons. With 
55 unknowns per wavelength, the first-order solution actually agrees very well with the exact solution, even at the 
outer boundaries. Fig. 10c shows the result for 

! 

ka = 3, indicating that the first-order scheme is now very dissipative. 
 
 
 

 

      
 

                      (a) grid                                                 (b) 

! 

ka = 1                                             (c) 

! 

ka = 3 

 
 

 
Figure 10.  Contour plot of 

! 

E
x
for a plane wave incident on a perfectly conducting sphere. 

 

      
                       (a) grid                                             (b) third order                                     (c) fourth order 
 

     
 

Figure 9. Contour plot of 

! 

E
z
for a plane wave (

! 

ka = 5 ) incident on a perfectly conducting cylinder. 
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V. Concluding Remarks 
 
In this paper, we presented a new, high-order, conservative, and efficient method for conservation laws on 

unstructured grids. The method combines the best features of structured and unstructured grid methods in which the 
structured distribution of discrete variables in each unstructured cell maintains computational efficiency and 
geometric flexibility. It utilizes the concept of discontinuous and high-order local representations to achieve 
conservation and high accuracy. Universal reconstructions are obtained by distributing unknown and flux points in a 
geometrically similar manner for all unstructured cells. The flux derivatives needed to update the conservative 
unknowns are expressed as universal weighted sums of the fluxes, leading to great computational efficiency. An 
important aspect of the method is that the number of Riemann solvers per unknown decreases as the order of 
accuracy increases, reducing the cost for higher order. Placement of the unknown and flux points with various orders 
of accuracy are given for triangular and tetrahedral elements. Accuracy studies of the method are carried out with 
the 2D linear wave equation and Burgers’ equation, and each order of accuracy is numerically verified. Numerical 
solutions of plane electromagnetic waves incident on perfectly conducting circular cylinders and spheres are 
presented and compared with the exact solutions to demonstrate the capability of the method. Excellent agreements 
have been found. Further improvements include extension to high orders in three dimensions, curved boundaries, 
optimization of unknown and flux placements, implicit time integration, grid and order adaptation, multidimensional 
limiters and filters, and moving grids. 
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